Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Phys Rev Lett ; 131(5): 052503, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37595241

ABSTRACT

Potassium-40 is a widespread, naturally occurring isotope whose radioactivity impacts subatomic rare-event searches, nuclear structure theory, and estimated geological ages. A predicted electron-capture decay directly to the ground state of argon-40 has never been observed. The KDK (potassium decay) collaboration reports strong evidence of this rare decay mode. A blinded analysis reveals a nonzero ratio of intensities of ground-state electron-captures (I_{EC^{0}}) over excited-state ones (I_{EC^{*}}) of I_{EC^{0}}/I_{EC^{*}}=0.0095±[over stat]0.0022±[over sys]0.0010 (68% C.L.), with the null hypothesis rejected at 4σ. In terms of branching ratio, this signal yields I_{EC^{0}}=0.098%±[over stat]0.023%±[over sys]0.010%, roughly half of the commonly used prediction, with consequences for various fields [27L. Hariasz et al., companion paper, Phys. Rev. C 108, 014327 (2023)PRVCAN2469-998510.1103/PhysRevC.108.014327].

6.
Phys Rev Lett ; 121(5): 051301, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30118251

ABSTRACT

We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 g CDMS high-voltage device). These electron-recoil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/c^{2}. We demonstrate a sensitivity to dark photons competitive with other leading approaches but using substantially less exposure (0.49 g d). These results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive to single electronic excitations.

7.
Phys Rev Lett ; 120(6): 061802, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29481237

ABSTRACT

We report the result of a blinded search for weakly interacting massive particles (WIMPs) using the majority of the SuperCDMS Soudan data set. With an exposure of 1690 kg d, a single candidate event is observed, consistent with expected backgrounds. This analysis (combined with previous Ge results) sets an upper limit on the spin-independent WIMP-nucleon cross section of 1.4×10^{-44} (1.0×10^{-44}) cm^{2} at 46 GeV/c^{2}. These results set the strongest limits for WIMP-germanium-nucleus interactions for masses >12 GeV/c^{2}.

8.
Phys Rev Lett ; 116(7): 071301, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26943526

ABSTRACT

The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV/c^{2}.

9.
Phys Rev Lett ; 114(11): 111302, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25839256

ABSTRACT

While the standard model of particle physics does not include free particles with fractional charge, experimental searches have not ruled out their existence. We report results from the Cryogenic Dark Matter Search (CDMS II) experiment that give the first direct-detection limits for cosmogenically produced relativistic particles with electric charge lower than e/6. A search for tracks in the six stacked detectors of each of two of the CDMS II towers finds no candidates, thereby excluding new parameter space for particles with electric charges between e/6 and e/200.

10.
Phys Rev Lett ; 112(24): 241302, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24996080

ABSTRACT

We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg days was analyzed for WIMPs with mass <30 GeV/c(2), with the signal region blinded. Eleven events were observed after unblinding. We set an upper limit on the spin-independent WIMP-nucleon cross section of 1.2×10(-42) cm(2) at 8 GeV/c(2). This result is in tension with WIMP interpretations of recent experiments and probes new parameter space for WIMP-nucleon scattering for WIMP masses <6 GeV/c(2).

11.
Phys Rev Lett ; 112(4): 041302, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24580434

ABSTRACT

SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.

12.
Phys Rev Lett ; 111(15): 154301, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24160603

ABSTRACT

Prompted by intriguing events observed in certain particle-physics searches for rare events, we study light and acoustic emission simultaneously in some inorganic scintillators subject to mechanical stress. We observe mechanoluminescence in Bi4Ge3O12, CdWO4, and ZnWO4, in various mechanical configurations at room temperature and ambient pressure. We analyze the temporal and amplitude correlations between the light emission and the acoustic emission during fracture. A novel application of the precise energy calibration of Bi4Ge3O12 provided by radioactive sources allows us to deduce that the fraction of elastic energy converted to light is at least 3×10(-5).

13.
Rev Sci Instrum ; 80(4): 046105, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19405701

ABSTRACT

Interest in solid scintillators down to liquid helium temperature and below has grown recently, fuelled by searches for exotic processes in particle physics. We describe a closed-cycle optical cryostat with a 2.8 K base temperature and a compact optical geometry for multiple photon counting. The large numerical aperture achieved, of the order of 0.79 from the optical center to each of the two windows and amounting to 40% of the total solid angle, allows a significant gain in the efficiency of photon collection. This and the relatively big sample size that can be used facilitate the study of scintillators under gamma irradiation. These features should be an asset for multiple photon counting techniques at low temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...